TWO FURTHER 6,12-CIS-GERMACRANOLIDES FROM MONTANOA TOMENTOSA SUBSP. XANTHIIFOLIA

VÍCTOR CASTRO and JASMIN JAKUPOVIC*

Universidad de Costa Rica, Escuela de Química, CIPRONA, San José, Costa Rica; *Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Revised received 15 January 1985)

Key Word Index—Montanoa tomentosa subsp. xanthiifolia; Compositae; sesquiterpenes; lactones; 6,12-cis-germacranolides; kaurane derivatives.

Abstract—The aerial parts of *Montanoa tomentosa* subsp. xanthiifolia gave two further 6,12-cis-germacranolides while the roots contained large amounts of kaurane derivatives.

INTRODUCTION

From the genus Montanoa (tribe Heliantheae) mostly the rare 6,12-cis-germacranolides were isolated [1]. Only from M. tomentosa, belonging to the monotypic subgenus Montanoa, were other lactones reported [2]. We have now studied M. tomentosa subsp. xanthiifolia Sch. Bip. from Costa Rica.

RESULTS AND DISCUSSION

The aerial parts gave in addition to widespread diterpenes the isomeric lactones 1 and 2, the structures of which were easily assigned by comparison of their ¹H NMR spectral data (Table 1) with those of corresponding germacranolides [3, 4]. The nature of the ester group followed from the typical ¹H NMR signals and their relative position, from the chemical shifts of H-8 and H-9 respectively, and from the downfield shift of the H-1 signal in the spectrum of 2. The presence of a 6β ,12-lactone led to the typical coupling $J_{6,7} \sim 6$ Hz and the small coupling $J_{7,13}$. Compounds 1 and 2 are obviously the precursors of the 4,5-epoxides isolated from other Montanoa species [1].

The roots gave large amounts of ent-kaurenic acid, its $\Delta^{9(11)}$ -dehydro derivative, beyerenic acid, 15α -cinnamoyloxy-ent-kaurenic acid [5] and its $\Delta^{9(11)}$ -dehydro derivative [6], ent-kaurenal and its $\Delta^{9(11)}$ -dehydro derivative, 15α -angeloyloxy-ent-kaurenic acid and borneyl cinnamate.

EXPERIMENTAL

The air dried plant material (collected near Tilarán, Costa Rica voucher 1029081 National Herbarium, Costa Rica) was extracted with Et_2O -petrol-MeOH (1:1:1) and the extracts separated by the usual procedures [6]. The CC silica gel fractions of the extract (4.3 g) of the roots (530 g) obtained with Et_2O -petrol (1:4) gave 1 g each of ent-kaurenic acid, its $\Delta^{9(11)}$ -derivative and beyerenic acid (identified after conversion to their methyl esters and separation by TLC (AgNO₃ coated silica gel) by comparing their 400 MHz ¹H NMR spectra with those of authentic materials), 100 mg ent-kaurenal and its $\Delta^{9(11)}$ -dehydro derivative and 10 mg borneylcinnamate. The CC fraction with Et_2O -petrol (1:1) gave

by TLC 150 mg 15 α -cinnamoyloxy-ent-kaurenic acid, 100 mg of its $\Delta^{9(11)}$ -derivative and 5 mg 15 α -angeloyloxy-ent-kaurenic acid (these compounds were identified by comparison with authentic samples).

The polar CC fractions (silica gel) of the extract of the

Table 1. ¹H NMR spectral data of compounds 1 and 2 (400 MHz, CDCl₃ TMS as int. standard)

Н	1	2
1	5.30 ddq	5.61 m
2 2′	2.20 m	2.30 m
3	2.29 ddd	(
3′	2.00 ddd	2.08 m
5	4.94 d (br)	5.18 d (br)
6	5.15 dd	5.11 dd
7	3.17 dd (br)	3.11 dd (br)
8	4.02 dd	5.02 d
9	4.67 d	4.05 d
13	6.43 s (br)	6.24 d
13'	5.74 s (br)	5.53 d
14	1.63 d (br)	1.57 d (br)
15	1.69 d	1.70 d
OCOR	5.70 qq	5.59 qq
	2.16 d	2.12 d
	1.90 d	1.88 d

J (Hz): 1, 2 = 8; 1, 2' = 9; 1, 14 = 1.5; 2, 3 = 2', 3 = 3.5; 2, 3' = 2', 3' = 9; 3, 3' = 11.5; 5, 6 = 11; 5, 15 = 1.5; 6, 7 = 6; 7, 8 = 8; 7, 13 = 7, 13' = 1; 8, 9 = 9. aerial parts (from 320 g) (Et₂O and Et₂O-MeOH, 1:9) were further separated by repeated TLC (silica gel PF 254, C_6H_6 -CH₂Cl₂-Et₂O, 4.5:4.5:1, three developments) affording 4 mg 1 (R_f 0.18) and 6.3 mg 2 (R_f 0.2) (the total amount of 1 and 2 was about 100 mg, but a lot of material was lost during the lengthy separations).

8α-Hydroxy-9β-senecioyloxy-trans, trans-germacra-1(10), 4-dien-cis-6,12-olide (1). Colourless oil, IR $v_{max}^{\rm CCL}$ cm $^{-1}$: 3600 (OH), 1775 (γ-lactone), 1725, 1645 (C=CCO₂R); MS m/z (rel. int.): 346.178 [M]⁺ (0.7) (calc. for C₂₀H₂₆O₃: 346.178), 246 [M - RCO₂H]⁺ (3.5), 231 [246 - Me]⁺ (3), 228 [246 - H₂O]⁺ (6), 213 [228 - Me]⁺ (4), 83 [C₄H₇CO]⁺ (100);

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-186} \frac{578}{-195} \frac{546}{-225} \frac{436 \text{ nm}}{-412} \text{ (CHCl}_3; c = 0.4).$$

9β-Hydroxy-8α-senecioyloxy-trans, trans-germacra-1(10), 4-dien-cis-6,12-olide (2). Colourless oil, IR v_{max}^{CQ} cm⁻¹: 3590 (OH), 1780 (y-lactone), 1733, 1650 (C=CCO₂R); MS m/z (rel. int.): 346.178 [M]⁺ (0.2) (calc. for C₂₀H₂₆O₅: 346.178), 246 [M

 $-RCO_2H]^+$ (3.5), 231 [246 $-Me]^+$ (2), 228 [246 $-H_2O]^+$ (4), 213 [228 $-Me]^+$ (2), 83 [C₄H₇CO]⁺ (100);

$$[\alpha]_{24^c}^{\lambda} = \frac{589 \quad 578 \quad 546 \quad 436 \text{ nm}}{-135 \quad -141 \quad -163 \quad -291} \text{ (CHCl}_3; c = 0.6).$$

REFERENCES

- Seaman, F. C., Malcolm, A. J. and Fischer, N. H. (1984) Phytochemistry 23, 1063.
- Seaman, F. C., Malcolm, A. J., Fronczek, F. R., Lee, I. Y. and Fischer, N. H. (1984) Phytochemistry 23, 646.
- 3. Herz, W. and Govindan, S. V. (1980) J. Org. Chem. 45, 1113.
- Bohlmann, F., Schmeda-Hirschmann, G., Jakupovic, J., Castro, V., Cicció, J. F. and Calvo, G. (1984) J. Nat. Prod. 47, 663.
- 5. Bohlmann, F. and Le Van, N. (1978) Phytochemistry 17, 1957.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.

Phytochemistry, Vol. 24, No. 10, pp. 2450-2451, 1985. Printed in Great Britain.

0031-9422/85 \$3.00+0.00 © 1985 Pergamon Press Ltd.

4β,19-EPOXY-NORKAURENE AND OTHER DITERPENES FROM MIKANIA BANISTERIAE

VÍCTOR CASTRO and JASMIN JAKUPOVIC*

Universidad de Costa Rica, Escuela de Química, CIPRONA, San José, Costa Rica; *Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Revised received 15 January 1985)

Key Word Index—Mikania banisteriae; Compositae; diterpenes; kaurane derivative; norkaurane derivative.

Abstract—The aerial parts of Mikania banisterae afforded four new diterpenes, ent-kaur-16-en-18-al, 18-acetoxy-ent-kaurene, 18-hydroxy-16 α ,17-epoxy-ent-kaurane and 4 β -19-epoxy-18-nor-ent-kaurene.

INTRODUCTION

From the large genus Mikania (tribe Eupatorieae, subtribe Mikaniinae) so far mainly highly oxygenated sesquiterpene lactones have been reported [1]. However, there are also several species in which these compounds are replaced by a large variety of diterpenes [2]. We have studied a species from Costa Rica, M. banisteriae DC.

RESULTS AND DISCUSSION

The aerial parts gave ent-kaur-16-en-18-oic acid, 4-epi-abietic acid, ozic acid and four further diterpenes, the kaurane derivatives 2-4 and the nor-kaurene 5. The hydroxy derivative 1 has been isolated previously from a Sideritis species [3] and the acetate 2 has been prepared from 1 [3]. The ¹³C NMR data agreed nicely with those reported [4]. The ¹H and ¹³C NMR data (Table 1) of 3

showed clearly that this compound was the 4-epimer of the known ent-kaur-16-en-19-al. Accordingly, the ¹H NMR shifts of the methyl singlets differed charac-